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Summary

This study is an experimental investigation of the
robustness of various controllers designed for the Large
Angle Magnetic Suspension Test Fixture (LAMSTF).
Both analytical and identi�ed nominal models are used
for designing controllers along with two di�erent types
of uncertainty models. Robustness refers to maintain-
ing tracking performance under analytical model errors
and dynamically induced eddy currents, while external
disturbances are not considered. Results show that
incorporating robustness into analytical models gives
signi�cantly better results. However, incorporating incor-
rect uncertainty models may lead to poorer performance
than not designing for robustness at all. Designing con-
trollers based on accurate identi�ed models gave the best
performance. In fact, incorporating a signi�cant level of
robustness into an accurate nominal model resulted in
reduced performance. This paper discusses an assortment
of experimental results in a consistent manner using
robust control theory.

1 Introduction

Robust tracking control of the Large Angle Magnetic
Suspension Test Fixture (LAMSTF) consists of con-
trolling the attitude and position of a suspended rigid
body in the presence of external disturbances and model
uncertainties. A detailed description of the LAMSTF is
given in [1] and the open-loop dynamic properties of the
magnetic suspension system is given in [2].

The work reported herein parallels references [3]-
[6] and is a continuation of [7]. The above references
consider vibration attenuation and �ne-pointing control
for a stable large 
exible laboratory structure. In stark
contrast to the above passively stable 
exible structure,
the LAMSTF system is a highly unstable rigid body.
Furthermore, the nature of the uncertainties in the two
systems di�er; the uncertainty in the system in [3]-
[6] is mostly due to inaccurate knowledge of damping,
frequency and mode shapes of the structural modes and
truncated higher frequency structural modes. While for
LAMSTF the uncertainty is mostly due to errors in the
linearization about the equilibrium state, an inaccurate
knowledge of the spatial distribution of the magnetic �eld,
sensor calibration errors, and errors at the plant input due
to induced eddy currents.

The underlying motivation in this study is that
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for a class of complex expensive systems, for example
space vehicles, there is a limitation on model �delity
due to time-varying model variations and/or limited
amount of data available for su�ciently thorough system
identi�cation work. The novelty in this paper consists
of determining what factors are important in applying
robust control design to a real problem.

A series of tests was designed and conducted to
investigate the e�ect of erroneous nominal models and
erroneous uncertainty models. The e�ect of erroneous
nominal model was investigated by comparing the closed
loop results of controllers based on analytical and iden-
ti�ed plants. The e�ect of erroneous uncertainty model
was investigated by comparing the closed loop results of
nominal to a perturbed test which involves placing an
aluminium ring above the suspended magent to induce a
particular type of eddy current. This externally induced
eddy current is in addition to the existing eddy currents
in the �ve iron cores of the electromagents which is not
included in the analytical model.

2 Linear Model of LAMSTF

The system shown in Figure 1 is the LAMSTF. It
consists of �ve electromagnets which actively suspend a
small cylindrical permanent magnet. The cylinder is a
rigid body and has six independent degrees of freedom.
Reference [7] gives a detailed derivation of both the linear
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Figure 1: LAMSTF Con�guration

and nonlinear models. The following provides a synopsis
for the linear model used in the control design.



De�ning the state vector

� = (!2; !3; �2; �3; v1; v2; v3; x1; x2; x3)
T (1)

the linearized perturbed motion about the equilibrium is
given by

� _� = Â�� + B̂�� (2)

where the detailed analytical expressions for Â and B̂ are
given in [7]. These expressions depend on many physical
constants including an analytic approximation of the
magnetic �eld distribution whose numerous parameters
were obtained by numerical modeling. The variables !i,
�i, vi, and xi denote the ith angular velocity of the
cylinder with respect to the body frame; the ith Euler
parameter relative to the inertial frame; and the ith
translational velocity and displacement of the centroid,
respectively.

It can be shown that all ten states are completely
controllable from the �ve coil currents. The open-loop
system at the equilibrium state is also very unstable. For
a detailed discussion of the physical signi�cance of all
modes, the interested reader is referred to [2].

A set of six sensors detects the �ve physical variables:
pitch and yaw angles, and three displacements of the
centroid. Roll of the cylinder is both uncontrollable and
unobservable. The �ve physical variables sensed, denoted
as y0, are related approximately linearly to the state
vector by

y0 = Ĉ�� (3)

where Ĉ is given in [7]. The measured voltage outputs
denoted by y, are related to physical states y0 by

y0 = [S2P] y y = [P2S] y0 (4)

Both the sensor (physical state to output voltage) and
actuator systems (current to forces and torques) have
high bandwidth and are modeled as constants (not shown
for brevity), denoted by matrices P2S and A2F . In
summary, input to the system consists of �ve currents
into �ve electromagnets, ��, and the measured outputs
are six voltage signals, y, related to the position of the
suspended element.

3 Controller Design

The main objective of the controller is to stabilize
the cylinder and track a command signal about the
equilibrium state. The problem is complicated by the
omni presence of model errors and noise. Hence, robust
tracking is sought. This requires the speci�cation of a
tracking performance index and the uncertainty set for
which the tracking performance is supposedly guaranteed.
Of course, this guarantee is with respect to modeled
uncertainty which itself may be uncertain. Uncertainty
in the uncertainty model itself is a real dilemma which
partly motivates our work.

Controllers that meet a certain tracking performance
are sought for a set of plants. The set of plants is
de�ned by the nominal and uncertainty models. Both
the linearized analytical model derived from �rst prin-
ciples and an empirical model obtained from closed
loop system identi�cation [8] results are used as the
nominalmodels. The measurement noise and disturbance
uncertainties are included to re
ect realistic values from

signals encountered in the laboratory. On the other
hand, model uncertainties in the loop are more di�cult to
characterize quantitatively. The model errors considered
consist of two components, namely, nominal model error
and externally induced eddy currents (due to added
aluminium ring). No attempt was made to model the
deviation of the nominal model from the true model
but instead controllers based on identi�ed and analytical
nominal models are compared. On the other hand, errors
due to externally induced eddy currents are heuristically
modeled resulting in two di�erent types of uncertainties,
multiplicative at the input and additive.

Figure 2 illustrates the interconnection structure.
Due to the high speed of the real-time digital implemen-
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Figure 2: Interconnections in LAMSTF system

tation at 800 Hz when compared to the loop bandwidth
of approximately 50 Hz, all controllers were designed in
the continuous domain. The small computational time
delay and zero-order-hold e�ects are ignored.

3.1 Tracking Performance

The tracking performance is de�ned by the principal gains
such that

��
�
G�1e Y �1max(I + GK)�1Ymax

� � 1; 8! 2 [0;1) (5)

where the frequency weighting function matrix, Ge =
diag(ge1; :::; ge5), are given by

ge = fDC

�
(s+ !n)

(s+ !d)

�
!d
!n

��
(6)

The following parameters were chosen: !n = 2 r/s for
pitch and yaw axes and 1 r/s for x; y; z axes, !d = 1000
r/s and fDC = :05 for all channels. This weight speci�es
the steady state tracking error to be within 5 % for all
�ve axes up to about 1 to 2 rad/sec and decreases by 20
db per decade until 1000 rad/s. This frequency weighting
results in the tracking error reaching 100% at a frequency
of about 200 rad/s for both controllers.

Note that the above sensitivity matrix is normalized
to unity at the inputs and outputs by the designed
tracking command magnitudes

Ymax = diag(
�

180
;
�

180
; :0005; :0005; :0005) (7)

Therefore the maximum singular value corresponding to
this scaled transfer function from command input to
tracking error can be interpreted as the maximum2-norm
error with respect to all unit 2-norm bounded tracking
command vectors, scaled by Ymax.



Analytical Model Identi�ed Model
-0.0000 - 0.9556i 4.0290
-0.0000 + 0.9556i -3.1592 - 5.3601i
0.0000 - 7.9697i -3.1592 + 5.3601i
0.0000 + 7.9697i -7.6822
-9.7764 -0.8034 -10.2975i
9.7764 -0.8034 +10.2975i
57.8061 -58.8031 - 0.4229i
-57.8061 -58.8031 + 0.4229i
58.7793 60.3627
-58.7793 62.3473

Table 1: Eigenvalues for analytic and identi�ed models

3.2 Uncertainty Models

In this study, the main source of model errors are due
to (1) a relatively inaccurate analytical model which is
used as a nominal model and (2) externally induced eddy
current e�ects due to the placement of an aluminum ring
about the z axis.

To investigate the �rst e�ect, an identi�ed model of
the plant without the externally induced eddy currents
was obtained by a closed loop system identi�cation
technique. Table 1 shows the poles of the analytical and
identi�ed models. Neither model contains transmission
zeros. A signi�cant di�erence between the analytical and
identi�ed model is noted, especially at lower frequencies.
Instead of trying to generate an uncertainty model from
these two models, separate controllers were designed
using di�erent nominal models.

To investigate the second e�ect, two types of uncer-
tainties were developed and tested. Only the multiplica-
tive uncertainty description was designed to have some
physical basis for the actual eddy current e�ects. In this
way, the e�ect of using an incorrect uncertainty model
can be experimentally evaluated.

3.2.1 Additive

The additive uncertainty model (Figure 2) maps current
inputs to physical outputs. Assuming a nominal current
of 1 amp input in all channels, the perturbed currents are
scaled by the maximumanticipated physical outputs and
multiplied by a small factor, fa = :003 and .00015, for
signi�cant and insigni�cant additive uncertainty cases.
While the uncertainty in all other axes are assumed
constants, the additive uncertainty in the pitch axis is
rolled up by a �rst order polynomial of the form pa =
(s + 1)=(s + 100�)100� to simulate the e�ect of eddy
currents on the pitch axis. The additive uncertainty
weight is chosen as

Wa = fa � diag(pa; 1; 1; 1; 1) (8)

3.2.2 Multiplicative at Input

Figure 3 shows the eddy current uncertainty modeled as
a multiplicative type at the input. It is known that eddy
currents are proportional to the rate of change of the
magnetic �eld and therefore rate of change of actuator
currents. This eddy current in turn produces its own
magnetic �eld which interacts with the suspended magnet
to produce perturbation forces. These perturbed forces
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Figure 3: Input Multiplicative Uncertainty

and moments can be modeled as a set of perturbations
in the actuator currents. By knowing that the induced
eddy currents a�ect mostly the pitch axis, the moments
associated with the pitch axis were weighted 40 times
more than the other axes, i.e., T = diag(4; :1; :1; :1; :1).
It is important to note that the 40 times weighting
used is still arbitrary in the sense that it is simply our
representation of relative dominance. This is an example
of an uncertainty dilemma in modeling uncertainties. The
5 by 5 unstructured uncertainty represents the unknown
complex relationship between the time rate of change
in the �ve electromagnet currents to the equivalent
perturbed electromagnet currents.

The pure di�erentiator is approximated by a proper
transfer function !os=(s + !o)I5�5 where !o = 1000
rad/sec. The parameters k=
o denote the expected
amplitude of the eddy currents, and the values k = :2 and
:01 were chosen to represent signi�cant and insigni�cant
eddy current cases. The parameter 
o = 100� rad/sec
denotes the reference frequency with respect to which
the magnitude of k is scaled. The constant matrices
[A2F ] and [F2A] (not shown for brevity) denote the
transformation from coil current to torques and forces
on the rigid body and vice versa.

3.2.3 Input Disturbance and Noise

The input disturbances to the plant are included to
account for bias currents and ampli�er noise, a maximum
amplitude of .1 amp is assumed in all channels over all
frequencies. To normalize the input disturbance to a
unit 2-norm, the diagonal weighting matrix is given by
Ww = 1=

p
5I5�5.

Although the sensing system provides a wide dy-
namic range and is modeled as a constant matrix, [S2P ]
(not shown for brevity), there are uncertainties due to
measurement noise, small angle/displacement assump-
tions, sensor o�sets from equilibrium, and calibration
errors. In addition, the closed-loop bandwidth can be
limited by penalizing high frequency control activity via
assuming a �ctitious large noise at high frequencies. The
measurement noise weighting matrix chosen consists of
Wn = Gn�[S2P ] where the �rst term transforms assumed
measurement noise voltages into physical displacements
while Gn = gn � I6�6 where

gn = (
s+ 100

s + 5000
) � 50 �Nsd (9)

The term Nsd = 0:04 denotes 2-sigma noise level in the
voltage measurements observed in the laboratory. The
output is normalized by choosing Wy = Y �1max.

3.3 Control Designs Implemented

Figure 4 shows the augmented plant which includes
the performance and uncertainty weights. The � was
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Figure 4: Inputs and outputs of the augmented plant

minimized using D-K iteration [9, 10, 11]. All designs
converged in less than 5 iterations. The MATLAB
toolbox, �-Tools [12] was used.

Six controllers, Kaap, Kaar , Kamp, Kamr , Kimp,
Kimr , are designed and tested with and without the
externally induced eddy currents, which gives a total
of twelve experiments. The three subscripts for the
controllers are de�ned as follows: the �rst subscript (a; i)
denotes the analytic and identi�ed models, respectively,
for the nominal plant; the second subscript (m; a) de-
notes the multiplicative and additive uncertainties; and
the third subscript (p; r) denotes the performance and
robustness weightings, respectively. More precisely, the
performance weighted controller (third subscript p) is
actually a controller with negligible built-in robustness
while the robustness weighted controller (third subscript
r) is designed with a signi�cant level (compared to
performance weighted case) of uncertainties assumed.

The order of the controllers was reduced to ease
real-time implementation and to remove states that are
very weakly controllable and observable. The order of
the controllers was reduced to approximately 30 states
from 40 or more states. In all cases, the reduced
controller did not signi�cantly degrade the predicted
robust performance.

In the design of controllers, since only the assumed
level of uncertainties di�er, the robust performance index,
�, for performance controllers produced signi�cantly
smaller values than robustness emphasized controllers.
All suboptimal � values for the performance controllers
easily satis�ed the constraints while the suboptimal �
values for the robustness emphasized controllers did not
satisfy the desired level of robust performance up to
a factor of 2.6 for a robust controller with additive
uncertainties (Kaar). However, since � is de�ned rela-
tive to di�erent incorrect nominal models and incorrect
uncertainty structures, comparing the relative � values
attained do not necessarily translate to performance for
the unknown real system. The identi�ed model provides
an accurate nominal model but the precise level and
the uncertainty structure of the externally induced eddy
currents are still unknown.

4 Results

Figure 6 shows the results from a typical tracking ex-
periment which consists of independent step commands
in all �ve axes. The step commands were 2o for pitch
and yaw and 2 mm for x,y, and z axes. Although there
is considerable overshoot in all axes, the damping and
steady state errors were satisfactory.

Since the aluminum ring predominantly a�ects the
pitch axis, only pitch responses are shown in Figures 7-
9. The simulated, nominal experiment (without added
ring) and perturbed experiment (with ring) for controllers

Kaap and Kaar are given in Figure 7 and similarly for
controllers Kamp and Kamr in Figure 8 and controllers
Kimp and Kimr in Figure 9.

The simulations shown do not include the external
source of eddy currents induced by the added aluminum
ring so that it is only compared to the nominal experi-
ments. Comparing performance controllers in Figures 7
to 9 shows that the simulated response for the identi�ed
model (Figure 9) is much closer to the corresponding
experiment than the analytical models (Figures 7 and 8).
It therefore appears that the identi�ed model is closer to
the true nominal system than the analytical model.

4.1 Errors in Uncertainty Model

Controllers Kaap and Kaar in Figure 7 assume additive
uncertainties while controllers Kamp and Kamr in Figure
8 assume a multiplicative form. However, only the \ro-
bust" controllers, Kaar and Kamr incorporate signi�cant
uncertainty levels. These �gures show that including mul-
tiplicative uncertainty enhances performance (cf Kamr

vs. Kamp in Figure 8 for perturbed experiments) while
including additive uncertainty degrades performance (cf
Kaar vs. Kaap in Figure 7 for perturbed experiments).
Clearly, the choice of an uncertainty model is very
signi�cant and it is the burden of the control designer
to employ physical insight when applying robust control
techniques.

4.2 Errors in Nominal Model

The nominal experiments for controllers Kimp and Kamp

(Figures 8 and 9) show that controllers based on more
accurate nominal models give signi�cantly better perfor-
mance in terms of overshoot and damping. However for
robust controllers, Kimr and Kamr , the controller based
on a more accurate nominal model gave only slightly
better performance. This e�ect is ampli�ed for the
perturbed experiments which can be thought of as larger
errors in both the nominal models.

4.3 Performance and Robustness Tradeo�

Figure 5 depicts the anticipated performance variations
due to di�erences between the nominal (Go) and true
models (GT ) for di�ering design uncertainties (�). The
predicted performance drops with the distance of the true
model from the nominal model. The robustness tradeo�
involves a reduction in overall performance in order to
guarantee reduced levels of performance for a larger set
of plants (�r).

All the experimental results shown in this paper can
be explained by the generic performance and robustness
tradeo� diagram shown in Figure 5. Three main obser-
vations are:

� Let Go be the analytic model and G2 = GT . Since
k�pk1 � kG2 � Gok1 � k�rk1, Kamp could
give poor performance while Kamr should maintain
a reduced (by tradeo�) level of performance. In
addition, Kamp is expected to be more sensitive
(higher slope in Figure 5) to eddy current e�ects than
Kamr . These predictions are all veri�ed in Figure 8.

� Let Go be the identi�ed model and G1 = GT .
Since kG1 � Gok1 � k�pk1, Kimr should give less
performance than Kimp. With eddy currents, there
is only a slight reduction in performance (shaded
region around G1 in Figure 5). Figure 9 is consistent
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Figure 5: E�ect of model uncertainty on robust-
ness/performance tradeo�

with the above explanation. Clearly, in this case a
performance tradeo� for robustness is unnecessary.

� Controller Kamr (G2 = GT ) should have similar
performance as Kimr (G1 = GT ) since both are
robust controllers and they satisfy kGo � GTk1 �
k�rk1. This is reasonably veri�ed by comparing
Figures 8 and 9. Note that for Kamr , the true plant
may lie on the shoulder (Figure 5) and is slightly
more sensitive to eddy currents than controllerKimr .

5 Concluding Remarks

Although nothing concrete has been proven, the results
of this study provide a better understanding of the major
factors that in
uence the degree of success of a robust
control approach when applied to real problems. In
particular, the experiments were tailored to study the
e�ects of erroneous nominal and uncertainty models. The
experimental results support the following hypothesis:
(1) Incorporating robustness into analytical models gives
signi�cantly better results. However, incorporating incor-
rect uncertainty models can lead to poorer performance
than not designing for robustness at all. (2) Designing
controllers based on accurate identi�ed models gives good
performance without robustness considerations. Finally
it was found that the performance obtained via robust
control techniques using only an inaccurate analytical
model with an approximate uncertainty model is com-
parable to the controller performance obtained by using
an accurately identi�ed model but without robustness
considerations.

References

1. Groom, N.J., and Britcher, C.P., \A Description of a
Laboratory Model Magnetic Suspension Test Fixture
with Large Angular Capability," First IEEE Conf. on
Control Applications, Dayton, Ohio, 1992.

2. Groom, N.J., and Britcher, C.P., \Open-Loop Charac-
teristics of Magnetic Suspension Systems Using Electro-

0 2 4 6 8 10 12 14 16 18 20

0

2

4

P
itc

h,
 d

eg

0 2 4 6 8 10 12 14 16 18 20

0

2

4

Y
aw

, d
eg

0 2 4 6 8 10 12 14 16 18 20

0

2

4

X
, m

m

0 2 4 6 8 10 12 14 16 18 20

0

2

4

Y
, m

m

0 2 4 6 8 10 12 14 16 18 20

0

2

4

Time, Sec

Z
, m

m

Figure 6: Tracking response for Kamr and Kimp

magnets Mounted in a Planar Array," NASA-TP 3229,
November 1992.

3. Balas, G.J., and Doyle, J.C., \Robust Control of Flexible
Modes in the Controller Crossover Region," ACC, 1989.

4. Balas, G.J., and Doyle, J.C., \Robustness and Perfor-
mance Tradeo�s in Control Design for Flexible Struc-
tures," CDC, 1990.

5. Lim, K.B., Maghami, P.G., and Joshi, S.M., \A Compar-
ison of Controller Designs for an Experimental Flexible
Structure," IEEE Control System Magazine, Vol.12,
No.3, June 1992.

6. Lim, K.B., and Balas, G.J., \Line-of-Sight Control of the
CSI Evolutionary Model: � Control," ACC, 1992.

7. Lim, K.B., and Cox, D.E., \Robust Tracking Control of
a Magnetically Suspended Rigid Body," 2nd Int. Symp.
on Magnetic Suspension Technology, 1993.

8. Huang,J-K., M-H Hsiao, M-H., and Cox, D.E., \Identi-
�cation of Linear Stochastic Systems from Closed-Loop
Data with Known Feedback Dynamics," CDC, 1994.

9. Doyle, J.C., \Analysis of Feedback Systems with Struc-
tured Uncertainties," Proc. IEE-D 129, 1982, pp. 242-
250.

10. Doyle, J.C., Glover, K., Khargonekar, P., and Francis, B.,
\State-space Solutions to Standard H2 and H1 Control
Problems," IEEE Trans on Auto Contr, Vol.34, No.8,
August 1989.

11. MUSYN Robust Control Short Course Lecture Notes,
Arcadia, CA, September, 1989.

12. Balas, G.J., Doyle, J. D., Glover, K., Packard, A. K., and
Smith, R., �-Analysis and Synthesis Toolbox, MUSYN
Inc., Minneapolis, 1991.



Simulation Nominal
Experiment

Perturbed
Experiment

Pe
rfo

rm
anc

e
Co

ntr
olle

r
Ro

bus
t

Co
ntr

olle
r

0 0.1 0.2
0

2

4

6

Time, s

Pit
ch 

ang
le, 

deg

0 0.1 0.2
0

2

4

6

Time, s

Pit
ch 

ang
le, 

deg

0 0.1 0.2
0

2

4

6

Time, s

Pit
ch 

ang
le, 

deg

0 0.1 0.2
0

2

4

6

Time, s

Pit
ch 

ang
le, 

deg

0 0.1 0.2
0

2

4

6

Time, s

Pit
ch 

ang
le, 

deg

0 0.1 0.2
0

2

4

6

Time, s

Pit
ch 

ang
le, 

deg

Figure 7: Experimental and simulated pitch tracking for Kaap and Kaar
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Figure 8: Experimental and simulated pitch tracking for Kamp and Kamr
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Figure 9: Experimental and simulated pitch tracking for Kimp and Kimr


